3.1.96 \(\int \csc ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx\) [96]

Optimal. Leaf size=127 \[ -\frac {(a+b) \tanh ^{-1}\left (\frac {\sqrt {a} \sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{2 \sqrt {a} f}+\frac {\sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{f}-\frac {\cot (e+f x) \csc (e+f x) \sqrt {a-b+b \sec ^2(e+f x)}}{2 f} \]

[Out]

-1/2*(a+b)*arctanh(sec(f*x+e)*a^(1/2)/(a-b+b*sec(f*x+e)^2)^(1/2))/f/a^(1/2)+arctanh(sec(f*x+e)*b^(1/2)/(a-b+b*
sec(f*x+e)^2)^(1/2))*b^(1/2)/f-1/2*cot(f*x+e)*csc(f*x+e)*(a-b+b*sec(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 127, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {3745, 478, 537, 223, 212, 385, 213} \begin {gather*} -\frac {(a+b) \tanh ^{-1}\left (\frac {\sqrt {a} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)-b}}\right )}{2 \sqrt {a} f}+\frac {\sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)-b}}\right )}{f}-\frac {\cot (e+f x) \csc (e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{2 f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Csc[e + f*x]^3*Sqrt[a + b*Tan[e + f*x]^2],x]

[Out]

-1/2*((a + b)*ArcTanh[(Sqrt[a]*Sec[e + f*x])/Sqrt[a - b + b*Sec[e + f*x]^2]])/(Sqrt[a]*f) + (Sqrt[b]*ArcTanh[(
Sqrt[b]*Sec[e + f*x])/Sqrt[a - b + b*Sec[e + f*x]^2]])/f - (Cot[e + f*x]*Csc[e + f*x]*Sqrt[a - b + b*Sec[e + f
*x]^2])/(2*f)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 478

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[e^(n - 1
)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(b*n*(p + 1))), x] - Dist[e^n/(b*n*(p + 1)), Int[(e*x)^
(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(m - n + 1) + d*(m + n*(q - 1) + 1)*x^n, x], x], x] /;
FreeQ[{a, b, c, d, e}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[q, 0] && GtQ[m - n + 1, 0] &
& IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 537

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 3745

Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = Free
Factors[Sec[e + f*x], x]}, Dist[1/(f*ff^m), Subst[Int[(-1 + ff^2*x^2)^((m - 1)/2)*((a - b + b*ff^2*x^2)^p/x^(m
 + 1)), x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rubi steps

\begin {align*} \int \csc ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx &=\frac {\text {Subst}\left (\int \frac {x^2 \sqrt {a-b+b x^2}}{\left (-1+x^2\right )^2} \, dx,x,\sec (e+f x)\right )}{f}\\ &=-\frac {\cot (e+f x) \csc (e+f x) \sqrt {a-b+b \sec ^2(e+f x)}}{2 f}+\frac {\text {Subst}\left (\int \frac {a-b+2 b x^2}{\left (-1+x^2\right ) \sqrt {a-b+b x^2}} \, dx,x,\sec (e+f x)\right )}{2 f}\\ &=-\frac {\cot (e+f x) \csc (e+f x) \sqrt {a-b+b \sec ^2(e+f x)}}{2 f}+\frac {b \text {Subst}\left (\int \frac {1}{\sqrt {a-b+b x^2}} \, dx,x,\sec (e+f x)\right )}{f}+\frac {(a+b) \text {Subst}\left (\int \frac {1}{\left (-1+x^2\right ) \sqrt {a-b+b x^2}} \, dx,x,\sec (e+f x)\right )}{2 f}\\ &=-\frac {\cot (e+f x) \csc (e+f x) \sqrt {a-b+b \sec ^2(e+f x)}}{2 f}+\frac {b \text {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{f}+\frac {(a+b) \text {Subst}\left (\int \frac {1}{-1+a x^2} \, dx,x,\frac {\sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{2 f}\\ &=-\frac {(a+b) \tanh ^{-1}\left (\frac {\sqrt {a} \sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{2 \sqrt {a} f}+\frac {\sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{f}-\frac {\cot (e+f x) \csc (e+f x) \sqrt {a-b+b \sec ^2(e+f x)}}{2 f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(586\) vs. \(2(127)=254\).
time = 2.53, size = 586, normalized size = 4.61 \begin {gather*} -\frac {\cot (e+f x) \csc (e+f x) \sqrt {(a+b+(a-b) \cos (2 (e+f x))) \sec ^2(e+f x)} \left (-a \log \left (a-2 b-a \tan ^2\left (\frac {1}{2} (e+f x)\right )+\sqrt {a} \sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}\right )-b \log \left (a-2 b-a \tan ^2\left (\frac {1}{2} (e+f x)\right )+\sqrt {a} \sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}\right )+a \cos (e+f x) \log \left (a-2 b-a \tan ^2\left (\frac {1}{2} (e+f x)\right )+\sqrt {a} \sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}\right )+b \cos (e+f x) \log \left (a-2 b-a \tan ^2\left (\frac {1}{2} (e+f x)\right )+\sqrt {a} \sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}\right )+\frac {\sqrt {a} \sqrt {(a+b+(a-b) \cos (2 (e+f x))) \sec ^4\left (\frac {1}{2} (e+f x)\right )}}{\sqrt {2}}-16 \sqrt {a} \sqrt {b} \tanh ^{-1}\left (\frac {-\sqrt {a} \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )+\sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}{2 \sqrt {b}}\right ) \sin ^2\left (\frac {1}{2} (e+f x)\right )-4 (a+b) \tanh ^{-1}\left (\tan ^2\left (\frac {1}{2} (e+f x)\right )-\frac {\sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}{\sqrt {a}}\right ) \sin ^2\left (\frac {1}{2} (e+f x)\right )\right )}{2 \sqrt {a} f \sqrt {(a+b+(a-b) \cos (2 (e+f x))) \sec ^4\left (\frac {1}{2} (e+f x)\right )}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Csc[e + f*x]^3*Sqrt[a + b*Tan[e + f*x]^2],x]

[Out]

-1/2*(Cot[e + f*x]*Csc[e + f*x]*Sqrt[(a + b + (a - b)*Cos[2*(e + f*x)])*Sec[e + f*x]^2]*(-(a*Log[a - 2*b - a*T
an[(e + f*x)/2]^2 + Sqrt[a]*Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2]]) - b*Log[a - 2*b - a
*Tan[(e + f*x)/2]^2 + Sqrt[a]*Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2]] + a*Cos[e + f*x]*L
og[a - 2*b - a*Tan[(e + f*x)/2]^2 + Sqrt[a]*Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2]] + b*
Cos[e + f*x]*Log[a - 2*b - a*Tan[(e + f*x)/2]^2 + Sqrt[a]*Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/
2]^2)^2]] + (Sqrt[a]*Sqrt[(a + b + (a - b)*Cos[2*(e + f*x)])*Sec[(e + f*x)/2]^4])/Sqrt[2] - 16*Sqrt[a]*Sqrt[b]
*ArcTanh[(-(Sqrt[a]*(-1 + Tan[(e + f*x)/2]^2)) + Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2])
/(2*Sqrt[b])]*Sin[(e + f*x)/2]^2 - 4*(a + b)*ArcTanh[Tan[(e + f*x)/2]^2 - Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1
+ Tan[(e + f*x)/2]^2)^2]/Sqrt[a]]*Sin[(e + f*x)/2]^2))/(Sqrt[a]*f*Sqrt[(a + b + (a - b)*Cos[2*(e + f*x)])*Sec[
(e + f*x)/2]^4])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(2074\) vs. \(2(109)=218\).
time = 0.56, size = 2075, normalized size = 16.34

method result size
default \(\text {Expression too large to display}\) \(2075\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(f*x+e)^3*(a+b*tan(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/8/f*(cos(f*x+e)-1)*(4*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*cos(f*x+e)^2*b^(3/2)*a^(1/2
)*4^(1/2)-4*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*cos(f*x+e)^2*b^(1/2)*a^(3/2)*4^(1/2)+3*
ln(-2*(cos(f*x+e)-1)*(cos(f*x+e)*a^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)
*a+b*cos(f*x+e)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+b)/sin(f*x+e)^2/a^(1/2))*co
s(f*x+e)^2*b^(3/2)*4^(1/2)*a-ln(-4*(cos(f*x+e)*a^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1
/2)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+cos(f*x+e)*a-b*cos(f*x+e)+b)/(cos(f*x+e
)-1))*cos(f*x+e)^2*b^(3/2)*4^(1/2)*a-4*ln(-4*(cos(f*x+e)-1)*(cos(f*x+e)*a^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*
b+b)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)*a+b*cos(f*x+e)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1
/2)*a^(1/2)+b)/sin(f*x+e)^2/a^(1/2))*cos(f*x+e)^2*b^(3/2)*4^(1/2)*a+4*arctanh(1/8*(cos(f*x+e)-1)*(4^(1/2)*cos(
f*x+e)-4^(1/2)-2*cos(f*x+e)-2)/sin(f*x+e)^2/((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*b^(1/2)
*4^(1/2))*cos(f*x+e)^2*a^(3/2)*4^(1/2)*b+8*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(3/2)*cos(f*x+
e)^2*b^(1/2)*a^(1/2)+2*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*cos(f*x+e)*b^(1/2)*a^(3/2)*4
^(1/2)-ln(-2*(cos(f*x+e)-1)*(cos(f*x+e)*a^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)-cos
(f*x+e)*a+b*cos(f*x+e)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+b)/sin(f*x+e)^2/a^(1
/2))*cos(f*x+e)^2*b^(1/2)*4^(1/2)*a^2-ln(-4*(cos(f*x+e)*a^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)
+1)^2)^(1/2)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+cos(f*x+e)*a-b*cos(f*x+e)+b)/(
cos(f*x+e)-1))*cos(f*x+e)^2*b^(1/2)*4^(1/2)*a^2+16*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(3/2)*
cos(f*x+e)*b^(1/2)*a^(1/2)-4*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*b^(3/2)*a^(1/2)*4^(1/2
)+2*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*b^(1/2)*a^(3/2)*4^(1/2)-3*ln(-2*(cos(f*x+e)-1)*
(cos(f*x+e)*a^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)*a+b*cos(f*x+e)+((a*c
os(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+b)/sin(f*x+e)^2/a^(1/2))*b^(3/2)*4^(1/2)*a+ln(-4
*(cos(f*x+e)*a^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)+((a*cos(f*x+e)^2-cos(f*x+e)^2*
b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+cos(f*x+e)*a-b*cos(f*x+e)+b)/(cos(f*x+e)-1))*b^(3/2)*4^(1/2)*a+4*ln(-4*(c
os(f*x+e)-1)*(cos(f*x+e)*a^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)*a+b*cos
(f*x+e)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+b)/sin(f*x+e)^2/a^(1/2))*b^(3/2)*4^
(1/2)*a-4*arctanh(1/8*(cos(f*x+e)-1)*(4^(1/2)*cos(f*x+e)-4^(1/2)-2*cos(f*x+e)-2)/sin(f*x+e)^2/((a*cos(f*x+e)^2
-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*b^(1/2)*4^(1/2))*a^(3/2)*4^(1/2)*b+8*((a*cos(f*x+e)^2-cos(f*x+e)^2*
b+b)/(cos(f*x+e)+1)^2)^(3/2)*b^(1/2)*a^(1/2)+ln(-2*(cos(f*x+e)-1)*(cos(f*x+e)*a^(1/2)*((a*cos(f*x+e)^2-cos(f*x
+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)*a+b*cos(f*x+e)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)
^2)^(1/2)*a^(1/2)+b)/sin(f*x+e)^2/a^(1/2))*b^(1/2)*4^(1/2)*a^2+ln(-4*(cos(f*x+e)*a^(1/2)*((a*cos(f*x+e)^2-cos(
f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+cos(f
*x+e)*a-b*cos(f*x+e)+b)/(cos(f*x+e)-1))*b^(1/2)*4^(1/2)*a^2)*cos(f*x+e)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/cos
(f*x+e)^2)^(1/2)/((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)/sin(f*x+e)^4/a^(3/2)/b^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^3*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*tan(f*x + e)^2 + a)*csc(f*x + e)^3, x)

________________________________________________________________________________________

Fricas [A]
time = 5.38, size = 905, normalized size = 7.13 \begin {gather*} \left [\frac {2 \, a \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + {\left ({\left (a + b\right )} \cos \left (f x + e\right )^{2} - a - b\right )} \sqrt {a} \log \left (-\frac {2 \, {\left ({\left (a - b\right )} \cos \left (f x + e\right )^{2} - 2 \, \sqrt {a} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + a + b\right )}}{\cos \left (f x + e\right )^{2} - 1}\right ) + 2 \, {\left (a \cos \left (f x + e\right )^{2} - a\right )} \sqrt {b} \log \left (-\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + 2 \, \sqrt {b} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + 2 \, b}{\cos \left (f x + e\right )^{2}}\right )}{4 \, {\left (a f \cos \left (f x + e\right )^{2} - a f\right )}}, \frac {{\left ({\left (a + b\right )} \cos \left (f x + e\right )^{2} - a - b\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {-a} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{a}\right ) + a \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + {\left (a \cos \left (f x + e\right )^{2} - a\right )} \sqrt {b} \log \left (-\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + 2 \, \sqrt {b} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + 2 \, b}{\cos \left (f x + e\right )^{2}}\right )}{2 \, {\left (a f \cos \left (f x + e\right )^{2} - a f\right )}}, -\frac {4 \, {\left (a \cos \left (f x + e\right )^{2} - a\right )} \sqrt {-b} \arctan \left (\frac {\sqrt {-b} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{b}\right ) - 2 \, a \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) - {\left ({\left (a + b\right )} \cos \left (f x + e\right )^{2} - a - b\right )} \sqrt {a} \log \left (-\frac {2 \, {\left ({\left (a - b\right )} \cos \left (f x + e\right )^{2} - 2 \, \sqrt {a} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + a + b\right )}}{\cos \left (f x + e\right )^{2} - 1}\right )}{4 \, {\left (a f \cos \left (f x + e\right )^{2} - a f\right )}}, \frac {{\left ({\left (a + b\right )} \cos \left (f x + e\right )^{2} - a - b\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {-a} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{a}\right ) - 2 \, {\left (a \cos \left (f x + e\right )^{2} - a\right )} \sqrt {-b} \arctan \left (\frac {\sqrt {-b} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{b}\right ) + a \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{2 \, {\left (a f \cos \left (f x + e\right )^{2} - a f\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^3*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(2*a*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + ((a + b)*cos(f*x + e)^2 - a - b)*sq
rt(a)*log(-2*((a - b)*cos(f*x + e)^2 - 2*sqrt(a)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e
) + a + b)/(cos(f*x + e)^2 - 1)) + 2*(a*cos(f*x + e)^2 - a)*sqrt(b)*log(-((a - b)*cos(f*x + e)^2 + 2*sqrt(b)*s
qrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + 2*b)/cos(f*x + e)^2))/(a*f*cos(f*x + e)^2 - a*
f), 1/2*(((a + b)*cos(f*x + e)^2 - a - b)*sqrt(-a)*arctan(sqrt(-a)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x +
 e)^2)*cos(f*x + e)/a) + a*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + (a*cos(f*x + e)^2
- a)*sqrt(b)*log(-((a - b)*cos(f*x + e)^2 + 2*sqrt(b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*
x + e) + 2*b)/cos(f*x + e)^2))/(a*f*cos(f*x + e)^2 - a*f), -1/4*(4*(a*cos(f*x + e)^2 - a)*sqrt(-b)*arctan(sqrt
(-b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/b) - 2*a*sqrt(((a - b)*cos(f*x + e)^2 + b)
/cos(f*x + e)^2)*cos(f*x + e) - ((a + b)*cos(f*x + e)^2 - a - b)*sqrt(a)*log(-2*((a - b)*cos(f*x + e)^2 - 2*sq
rt(a)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + a + b)/(cos(f*x + e)^2 - 1)))/(a*f*cos(
f*x + e)^2 - a*f), 1/2*(((a + b)*cos(f*x + e)^2 - a - b)*sqrt(-a)*arctan(sqrt(-a)*sqrt(((a - b)*cos(f*x + e)^2
 + b)/cos(f*x + e)^2)*cos(f*x + e)/a) - 2*(a*cos(f*x + e)^2 - a)*sqrt(-b)*arctan(sqrt(-b)*sqrt(((a - b)*cos(f*
x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/b) + a*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x +
e))/(a*f*cos(f*x + e)^2 - a*f)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {a + b \tan ^{2}{\left (e + f x \right )}} \csc ^{3}{\left (e + f x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)**3*(a+b*tan(f*x+e)**2)**(1/2),x)

[Out]

Integral(sqrt(a + b*tan(e + f*x)**2)*csc(e + f*x)**3, x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^3*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Ch
eck [abs(t_

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a}}{{\sin \left (e+f\,x\right )}^3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*tan(e + f*x)^2)^(1/2)/sin(e + f*x)^3,x)

[Out]

int((a + b*tan(e + f*x)^2)^(1/2)/sin(e + f*x)^3, x)

________________________________________________________________________________________